Definitions num thy 1 StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in num thy 1

DefP  Q[iff]core
Def[nat]int 1
Def{i..j}[int_seg]int 1
Defi  j < k[lelt]int 1
DefAB[le]core
Def[nat_plus]int 1
Defi =  j[pm_equal]int 2
Def|i|[absval]int 2
DefPreorder(T;x,y.R(x;y))[preorder]rel 1
DefDec(P)[decidable]core
DefEquivRel x,y:TE(x;y)[equiv_rel]rel 1
Defgcd(a;b)[gcd]
Defx:AB(x)[sq_exists]core
DefCoPrime(a,b)[coprime]
DefSqStable(P)[sq_stable]core
Def{T}[guard]core
Defatomic(a)[atomic]
Defprime(a)[prime]
Defa = b mod m[eqmod]
Deffib(n)[fib]
Defx:AB(x)[exists]core
DefGCD(a;b;y)[gcd_p]
Defreducible(a)[reducible]
Defa ~ b[assoced]
Defb | a[divides]
DefP & Q[and]core
DefP  Q[implies]core
Defx:AB(x)[all]core
Defi=j[eq_int]bool 1
Defif b t else f fi[ifthenelse]bool 1
DefY[ycomb]core
Def[int_nzero]int 1
Defa  b[nequal]core
DefA[not]core
DefP  Q[or]core
Defp  q[bor]bool 1
DefP  Q[rev_implies]core
Defij[le_int]bool 1
DefTrans x,y:TE(x;y)[trans]rel 1
DefRefl(T;x,y.E(x;y))[refl]rel 1
DefSym x,y:TE(x;y)[sym]rel 1
DefT[squash]core
Defi<j[lt_int]bool 1
Defb[bnot]bool 1

About:
productproductbfalsebtrueifthenelsedecidableintnatural_number
minusaddsubtractmultiplyremainderint_eqlessless_thanunion
decidesetlambdaapplyfunction
ycombequalimpliesandorfalsetrueallexists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions num thy 1 StandardLIB Doc