num thy 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def gcd(a;b) == if b=0 a else gcd(b;a rem b) fi  (recursive)

is mentioned by

Thm* a,b:. CoPrime(a,b (gcd(a;b) ~ 1)[coprime_elim_a]
Thm* a,b,c:. gcd(gcd(a;b);c) ~ gcd(a;gcd(b;c))[gcd_assoc]
Thm* a,b,n:. (ngcd(a;b)) ~ gcd(na;nb)[gcd_mul]
Thm* a,b,c:c | a  c | b  c | gcd(a;b)[gcd_is_gcd]
Thm* a,b:. gcd(a;b) | b[gcd_is_divisor_2]
Thm* a,b:. gcd(a;b) | a[gcd_is_divisor_1]
Thm* a,b:. gcd(a;b) ~ gcd(b;a)[gcd_sym]
Thm* a,b:y:. GCD(a;b;y) & gcd(a;b) = y[gcd_elim]
Thm* a,b:. GCD(a;b;gcd(a;b))[gcd_sat_pred]
Thm* a,b:. GCD(a;b;gcd(a;b))[gcd_sat_gcd_p]

Try larger context: StandardLIB IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

num thy 1 Sections StandardLIB Doc