num thy 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def GCD(a;b;y) == y | a & y | b & (z:z | a & z | b  z | y)

is mentioned by

Thm* a,b,y,n:. GCD(a;b;y GCD(na;nb;ny)[gcd_p_mul]
Thm* a,b:u,v:. GCD(a;b;ua+vb)[bezout_ident]
Thm* b:a:u,v:. GCD(a;b;ua+vb)[bezout_ident_n]
Thm* a,b:y:. GCD(a;b;y)[gcd_exists]
Thm* b:a:y:. GCD(a;b;y)[gcd_ex_n]
Thm* b:a:y:. GCD(a;b;y)[gcd_exists_n]
Thm* a,b:y:. GCD(a;b;y) & gcd(a;b) = y[gcd_elim]
Thm* a,b:. GCD(a;b;gcd(a;b))[gcd_sat_pred]
Thm* a,b:. GCD(a;b;gcd(a;b))[gcd_sat_gcd_p]
Thm* a,b,c,x,y:.
Thm* GCD(a;b;x)
Thm* 
Thm* GCD(x;c;y)
Thm* 
Thm* y | a & y | b & y | c & (z:z | a  z | b  z | c  z | y)
[gcd_of_triple]
Thm* a,b,y1,y2:. GCD(a;b;y1 GCD(a;b;y2 (y1 ~ y2)[gcd_unique]
Thm* a,b,y,k:. GCD(a;b;y GCD(a;b+ka;y)[gcd_p_shift]
Thm* a,b,y:. GCD(a;b;y GCD(a;-b;y)[gcd_p_neg_arg_2]
Thm* a,b,y:. GCD(a;b;y GCD(-a;b;y)[gcd_p_neg_arg_a]
Thm* a,b,y:. GCD(a;b;y GCD(a;-b;y)[gcd_p_neg_arg]
Thm* a,b,y:. GCD(a;b;y GCD(b;a;y)[gcd_p_sym_a]
Thm* a,b,y:. GCD(a;b;y GCD(b;a;y)[gcd_p_sym]
Thm* a,b:. GCD(a;0;b a = b  a = -b[gcd_p_zero_rel]
Thm* a:. GCD(a;1;1)[gcd_p_one]
Thm* a:. GCD(a;0;a)[gcd_p_zero]
Thm* a:. GCD(a;a;a)[gcd_p_eq_args]
Thm* a,a',b,b',y,y':.
Thm* (a ~ a' (b ~ b' (y ~ y' (GCD(a;b;y GCD(a';b';y'))
[gcd_p_functionality_wrt_assoced]
Def CoPrime(a,b) == GCD(a;b;1)[coprime]

Try larger context: StandardLIB IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

num thy 1 Sections StandardLIB Doc