Rank | Theorem | Name |
6 | Thm* a: , b:![](FONT/int.png) ![](FONT/minus.png) . b | a ![](FONT/if_big.png) (a rem b) = 0 | [divides_iff_rem_zero] |
cites the following: |
4 | Thm* a: , n:![](FONT/nat.png) . q: . Div(a;n;q) & (a n) = q | [div_elim] |
1 | Thm* a,b: , n:![](FONT/nat.png) . n a<n b ![](FONT/eq.png) a<b | [mul_cancel_in_lt] |
2 | Thm* a,b: , n:![](FONT/nat.png) . n a n b ![](FONT/eq.png) a b | [mul_cancel_in_le] |
4 | Thm* a: , n:{...-1}. (a rem n) = (a rem -n) | [rem_4_to_1] |
5 | Thm* a:{...0}, n:![](FONT/nat.png) . (a rem n) = -((-a) rem n) | [rem_2_to_1] |
5 | Thm* a:{...0}, n:{...-1}. (a rem n) = -((-a) rem -n) | [rem_3_to_1] |
1 | Thm* a,b: . a | b ![](FONT/if_big.png) a | -b | [divides_invar_2] |
0 | Thm* a,b: . a | b ![](FONT/if_big.png) -a | b | [divides_invar_1] |
1 | Thm* a: , n:![](FONT/int.png) ![](FONT/minus.png) . (a rem n) = a-(a n) n | [rem_to_div] |
0 | Thm* a,b,n: . a = b ![](FONT/if_big.png) a+n = b+n | [add_mono_wrt_eq] |