rel 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def P & Q == PQ

is mentioned by

Def Linorder(T;x,y.R(x;y)) == Order(T;x,y.R(x;y)) & Connex(T;x,y.R(x;y))[linorder]
Def Order(T;x,y.R(x;y))
Def == Refl(T;x,y.R(x;y)) & (Trans x,y:TR(x;y)) & AntiSym(T;x,y.R(x;y))
[order]
Def strict_part(x,y.R(x;y);a;b) == R(a;b) & R(b;a)[strict_part]
Def StAntiSym(T;x,y.R(x;y)) == x,y:T(R(x;y) & R(y;x))[st_anti_sym]
Def Symmetrize(x,y.R(x;y);a;b) == R(a;b) & R(b;a)[symmetrize]
Def Preorder(T;x,y.R(x;y)) == Refl(T;x,y.R(x;y)) & (Trans x,y:TR(x;y))[preorder]
Def EquivRel x,y:TE(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:TE(x;y)) & (Trans x,y:TE(x;y))
[equiv_rel]

In prior sections: core int 1 bool 1

Try larger context: StandardLIB IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

rel 1 Sections StandardLIB Doc