rel 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def Refl(T;x,y.E(x;y)) == a:TE(a;a)

is mentioned by

Thm* R,R':(TTProp).
Thm* (x,y:TR(x,y R'(x,y))  (Refl(T;x,y.R(x,y))  Refl(T;x,y.R'(x,y)))
[refl_functionality_wrt_iff]
Def Order(T;x,y.R(x;y))
Def == Refl(T;x,y.R(x;y)) & (Trans x,y:TR(x;y)) & AntiSym(T;x,y.R(x;y))
[order]
Def Preorder(T;x,y.R(x;y)) == Refl(T;x,y.R(x;y)) & (Trans x,y:TR(x;y))[preorder]
Def EquivRel x,y:TE(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:TE(x;y)) & (Trans x,y:TE(x;y))
[equiv_rel]

Try larger context: StandardLIB IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

rel 1 Sections StandardLIB Doc