is mentioned by
Thm* (x,y:T. Dec(R(x,y))) Thm* Thm* Linorder(T;x,y.R(x,y)) (a,b:T. strict_part(x,y.R(x,y);a;b) R(b,a)) | [linorder_lt_neg] |
Thm* Linorder(T;x,y.R(x,y)) (a,b:T. R(a,b) strict_part(x,y.R(x,y);b;a)) | [linorder_le_neg] |
Thm* (Trans a,b:T. R(a,b)) Thm* Thm* (a,b,c:T. Thm* (strict_part(x,y.R(x,y);a;b) R(b,c) strict_part(x,y.R(x,y);a;c)) | [trans_imp_sp_trans_b] |
Thm* (Trans a,b:T. R(a,b)) Thm* Thm* (a,b,c:T. Thm* (R(a,b) strict_part(x,y.R(x,y);b;c) strict_part(x,y.R(x,y);a;c)) | [trans_imp_sp_trans_a] |
Thm* (Trans a,b:T. R(a,b)) (Trans a,b:T. strict_part(x,y.R(x,y);a;b)) | [trans_imp_sp_trans] |
Thm* Order(T;x,y.R(x,y)) Thm* Thm* (x,y:T. Dec(x = y)) Thm* Thm* (a,b:T. R(a,b) strict_part(x,y.R(x,y);a;b) a = b) | [order_split] |
Thm* (a,b:T. Dec(R(a,b))) Thm* Thm* (Connex(T;x,y.R(x,y)) Thm* ( Thm* ((a,b:T. Thm* ((strict_part(x,y.R(x,y);a;b) Thm* (( Symmetrize(x,y.R(x,y);a;b) Thm* (( strict_part(x,y.R(x,y);b;a))) | [connex_iff_trichot] |
[strict_part_irrefl] |
Try larger context:
StandardLIB
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html