is mentioned by
Thm* (Trans a,b:T. R(a,b)) Thm* Thm* (a,b,c:T. Thm* (strict_part(x,y.R(x,y);a;b) R(b,c) strict_part(x,y.R(x,y);a;c)) | [trans_imp_sp_trans_b] |
Thm* (Trans a,b:T. R(a,b)) Thm* Thm* (a,b,c:T. Thm* (R(a,b) strict_part(x,y.R(x,y);b;c) strict_part(x,y.R(x,y);a;c)) | [trans_imp_sp_trans_a] |
Thm* (Trans a,b:T. R(a,b)) (Trans a,b:T. strict_part(x,y.R(x,y);a;b)) | [trans_imp_sp_trans] |
Thm* (Trans x,y:T. R(x,y)) Thm* Thm* (a,a',b,b':T. Thm* (Symmetrize(x,y.R(x,y);a;b) Thm* ( Thm* (Symmetrize(x,y.R(x,y);a';b') (R(a,a') R(b,b'))) | [trans_rel_func_wrt_sym_self] |
Thm* (Trans x,y:T. R(x,y)) Thm* Thm* (a,a',b,b':T. R(b,a) R(a',b') R(a,a') R(b,b')) | [trans_rel_self_functionality] |
Thm* (x,y:T. R(x,y) R'(x,y)) Thm* Thm* ((Trans y,x:T. R(x,y)) (Trans y,x:T. R'(x,y))) | [trans_functionality_wrt_iff] |
Def == Refl(T;x,y.R(x;y)) & (Trans x,y:T. R(x;y)) & AntiSym(T;x,y.R(x;y)) | [order] |
[preorder] | |
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) | [equiv_rel] |
Try larger context:
StandardLIB
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html