Definitions rel 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
equiv_relDef EquivRel x,y:TE(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:TE(x;y)) & (Trans x,y:TE(x;y))
Thm* T:Type, E:(TTProp). (EquivRel x,y:TE(x,y))  Prop
preorderDef Preorder(T;x,y.R(x;y)) == Refl(T;x,y.R(x;y)) & (Trans x,y:TR(x;y))
Thm* T:Type, R:(TTProp). Preorder(T;x,y.R(x,y))  Prop
reflDef Refl(T;x,y.E(x;y)) == a:TE(a;a)
Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y))  Prop
symDef Sym x,y:TE(x;y) == a,b:TE(a;b E(b;a)
Thm* T:Type, E:(TTProp). (Sym x,y:TE(x,y))  Prop
symmetrizeDef Symmetrize(x,y.R(x;y);a;b) == R(a;b) & R(b;a)
Thm* T:Type{j}, R:(TTProp{i}), a,b:T. Symmetrize(x,y.R(x,y);a;b Prop{i}
transDef Trans x,y:TE(x;y) == a,b,c:TE(a;b E(b;c E(a;c)
Thm* T:Type, E:(TTProp). (Trans x,y:TE(x,y))  Prop

About:
functionuniversememberpropimpliesandall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions rel 1 Sections StandardLIB Doc