| Some definitions of interest. |
|
equiv_rel | Def EquivRel x,y:T. E(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
refl | Def Refl(T;x,y.E(x;y)) == a:T. E(a;a) |
| | Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop |
|
sym | Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a) |
| | Thm* T:Type, E:(TTProp). (Sym x,y:T. E(x,y)) Prop |
|
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c) |
| | Thm* T:Type, E:(TTProp). (Trans x,y:T. E(x,y)) Prop |