Definitions
rel
1
Sections
StandardLIB
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
anti_sym
Def
AntiSym(
T
;
x
,
y
.
R
(
x
;
y
)) ==
x
,
y
:
T
.
R
(
x
;
y
)
R
(
y
;
x
)
x
=
y
Thm*
T
:Type,
R
:(
T
T
Prop). AntiSym(
T
;
x
,
y
.
R
(
x
,
y
))
Prop
iff
Def
P
Q
== (
P
Q
) & (
P
Q
)
Thm*
A
,
B
:Prop. (
A
B
)
Prop
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
rel
1
Sections
StandardLIB
Doc