Definitions rel 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
linorderDef Linorder(T;x,y.R(x;y)) == Order(T;x,y.R(x;y)) & Connex(T;x,y.R(x;y))
Thm* T:Type, R:(TTProp). Linorder(T;x,y.R(x,y))  Prop
connexDef Connex(T;x,y.R(x;y)) == x,y:TR(x;y R(y;x)
Thm* T:Type, R:(TTProp). Connex(T;x,y.R(x,y))  Prop
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
orderDef Order(T;x,y.R(x;y))
Def == Refl(T;x,y.R(x;y)) & (Trans x,y:TR(x;y)) & AntiSym(T;x,y.R(x;y))
Thm* T:Type, R:(TTProp). Order(T;x,y.R(x,y))  Prop

About:
functionuniversememberpropimpliesandorall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions rel 1 Sections StandardLIB Doc