| Some definitions of interest. |
|
linorder | Def Linorder(T;x,y.R(x;y)) == Order(T;x,y.R(x;y)) & Connex(T;x,y.R(x;y)) |
| | Thm* T:Type, R:(TTProp). Linorder(T;x,y.R(x,y)) Prop |
|
connex | Def Connex(T;x,y.R(x;y)) == x,y:T. R(x;y) R(y;x) |
| | Thm* T:Type, R:(TTProp). Connex(T;x,y.R(x,y)) Prop |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
order | Def Order(T;x,y.R(x;y))
Def == Refl(T;x,y.R(x;y)) & (Trans x,y:T. R(x;y)) & AntiSym(T;x,y.R(x;y)) |
| | Thm* T:Type, R:(TTProp). Order(T;x,y.R(x,y)) Prop |