| Some definitions of interest. |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
strict_part | Def strict_part(x,y.R(x;y);a;b) == R(a;b) & R(b;a) |
| | Thm* T:Type, R:(TTProp), a,b:T. strict_part(x,y.R(x,y);a;b) Prop |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |
|
order | Def Order(T;x,y.R(x;y))
Def == Refl(T;x,y.R(x;y)) & (Trans x,y:T. R(x;y)) & AntiSym(T;x,y.R(x;y)) |
| | Thm* T:Type, R:(TTProp). Order(T;x,y.R(x,y)) Prop |