Thms relation autom Sections AutomataTheory Doc

compose Def (f o g)(x) == f(g(x))

Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC

decidable Def Dec(P) == P P

Thm* A:Prop. Dec(A) Prop

equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)

Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

tidentity Def Id == Id

Thm* A:Type. Id AA

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)

Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop

sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)

Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop

refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)

Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop

identity Def Id(x) == x

Thm* A:Type. Id AA

About:
!abstractionapplyalluniversememberfunctionprop
impliesfalseless_thanintandsetor