relation autom Sections AutomataTheory Doc

Def {i..j} == {k:| i k < j }

Thm* n:{1...}, A:Type, R:(AAProp). (n ~ A) (EquivRel x,y:A. x R y) (x,y:A. Dec(x R y)) (m:(n+1). m ~ (x,y:A//(x R y))) quotient_of_finite

Thm* n:{1...}, E:(nnProp). (EquivRel x,y:n. x E y) & (x,y:n. Dec(x E y)) (m:(n+1). m ~ (i,j:n//(i E j))) quotient_of_nsubn

Thm* n:{1...}, m:n, E:(nnProp). (EquivRel x,y:n. x E y) (EquivRel x,y:m. x E y) rest_equi_rel

Thm* n:{1...}, m:n, E:(nnProp). Trans x,y:n. x E y Trans x,y:m. x E y rest_tran_rel

Thm* n:{1...}, m:n, E:(nnProp). Sym x,y:n. x E y Sym x,y:m. x E y rest_symm_rel

Thm* n:{1...}, m:n, E:(nnProp). Refl(n;x,y.x E y) Refl(m;x,y.x E y) rest_refl_rel

Thm* n:{1...}, E:(nnProp). (EquivRel i,j:n. i E j) (x:i,j:n//(i E j). x = n-1 i,j:n//(i E j) x i,j:(n-1)//(i E j)) incl_aux4_quo

Thm* n:{1...}, m:n, E:(nnProp). (EquivRel i,j:n. i E j) (x,y:i,j:m//(i E j). x = y i,j:n//(i E j) x = y) incl_aux3_quo

Thm* n:{1...}, m:n, E:(nnProp). (EquivRel x,y:n. x E y) (z:x,y:m//(x E y). z x,y:n//(x E y)) incl_aux2_quo

In prior sections: int 1 bool 1 int 2