Thm*
n:{1...}, A:Type, R:(A![]()
A![]()
Prop).
(
n ~ A) ![]()
(EquivRel x,y:A. x R y) ![]()
(
x,y:A. Dec(x R y)) ![]()
(
m:
(n+1).
m ~ (x,y:A//(x R y)))
quotient_of_finite
Thm*
n:{1...}, E:(
n![]()
![]()
n![]()
Prop).
(EquivRel x,y:
n. x E y) & (
x,y:
n. Dec(x E y)) ![]()
(
m:
(n+1).
m ~ (i,j:
n//(i E j)))
quotient_of_nsubn
Thm*
n:{1...}, m:
n, E:(
n![]()
![]()
n![]()
Prop).
(EquivRel x,y:
n. x E y) ![]()
(EquivRel x,y:
m. x E y)
rest_equi_rel
Thm*
n:{1...}, m:
n, E:(
n![]()
![]()
n![]()
Prop).
Trans x,y:
n. x E y ![]()
Trans x,y:
m. x E y
rest_tran_rel
Thm*
n:{1...}, m:
n, E:(
n![]()
![]()
n![]()
Prop). Sym x,y:
n. x E y ![]()
Sym x,y:
m. x E y
rest_symm_rel
Thm*
n:{1...}, m:
n, E:(
n![]()
![]()
n![]()
Prop). Refl(
n;x,y.x E y) ![]()
Refl(
m;x,y.x E y)
rest_refl_rel
Thm*
n:{1...}, E:(
n![]()
![]()
n![]()
Prop).
(EquivRel i,j:
n. i E j) ![]()
(
x:i,j:
n//(i E j).
x = n-1
i,j:
n//(i E j) ![]()
x
i,j:
(n-1)//(i E j))
incl_aux4_quo
Thm*
n:{1...}, m:
n, E:(
n![]()
![]()
n![]()
Prop).
(EquivRel i,j:
n. i E j) ![]()
(
x,y:i,j:
m//(i E j). x = y
i,j:
n//(i E j) ![]()
x = y)
incl_aux3_quo
Thm*
n:{1...}, m:
n, E:(
n![]()
![]()
n![]()
Prop).
(EquivRel x,y:
n. x E y) ![]()
(
z:x,y:
m//(x E y). z
x,y:
n//(x E y))
incl_aux2_quo