Thm* n:{1...}, A:Type, R:(A
A
Prop).
(
n ~ A)
(EquivRel x,y:A. x R y)
(
x,y:A. Dec(x R y))
(
m:
(n+1).
m ~ (x,y:A//(x R y)))
quotient_of_finite
Thm* n:{1...}, E:(
n
n
Prop).
(EquivRel x,y:
n. x E y) & (
x,y:
n. Dec(x E y))
(
m:
(n+1).
m ~ (i,j:
n//(i E j)))
quotient_of_nsubn
Thm* n:{1...}, m:
n, E:(
n
n
Prop).
(EquivRel x,y:
n. x E y)
(EquivRel x,y:
m. x E y)
rest_equi_rel
Thm* n:{1...}, m:
n, E:(
n
n
Prop).
Trans x,y:
n. x E y
Trans x,y:
m. x E y
rest_tran_rel
Thm* n:{1...}, m:
n, E:(
n
n
Prop). Sym x,y:
n. x E y
Sym x,y:
m. x E y
rest_symm_rel
Thm* n:{1...}, m:
n, E:(
n
n
Prop). Refl(
n;x,y.x E y)
Refl(
m;x,y.x E y)
rest_refl_rel
Thm* n:{1...}, E:(
n
n
Prop).
(EquivRel i,j:
n. i E j)
(
x:i,j:
n//(i E j).
x = n-1
i,j:
n//(i E j)
x
i,j:
(n-1)//(i E j))
incl_aux4_quo
Thm* n:{1...}, m:
n, E:(
n
n
Prop).
(EquivRel i,j:
n. i E j)
(
x,y:i,j:
m//(i E j). x = y
i,j:
n//(i E j)
x = y)
incl_aux3_quo
Thm* n:{1...}, m:
n, E:(
n
n
Prop).
(EquivRel x,y:
n. x E y)
(
z:x,y:
m//(x E y). z
x,y:
n//(x E y))
incl_aux2_quo