Definitions rfunction 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
int_upperDef {i...} == {j:ij }
Thm* n:. {n...}  Type
natDef  == {i:| 0i }
Thm*   Type
squashDef T == {:True| T }
Thm* A:Prop. A  Prop
wellfoundedDef WellFnd{i}(A;x,y.R(x;y))
Def == P:(AProp). (j:A. (k:AR(k;j P(k))  P(j))  {n:AP(n)}
Thm* A:Type{i}, r:(AAProp{i}). WellFnd{i}(A;x,y.r(x,y))  Prop{i'}

About:
boolbfalsebtrueintnatural_numberint_eqset
functionuniversememberpropimpliestrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions rfunction 1 Sections StandardLIB Doc