Selected Objects
| COM | sqequal_com |
Here are the essentials:
... |
| COM | sq_type_com |
There are other types in Nuprl that we can consider first order types.
... |
| def | sq_type |
SQType(T) == x,y:T. x = y  {x ~ y} |
| THM | int_sq |
SQType( ) |
| THM | nat_sq |
SQType( ) |
| THM | bool_sq |
SQType( ) |
| THM | atom_sq |
SQType(Atom) |
| THM | bool_sim_true |
b: . b = true  (b ~ true ) |
| THM | bool_sim_false |
b: . b = false  (b ~ false ) |
| THM | eq_int_eq_true_intro |
i,j: . i = j  ((i= j) ~ true ) |
| THM | eq_int_eq_false_intro |
i,j: . i = j  ((i= j) ~ false ) |
| THM | lt_int_eq_true_elim |
i,j: . (i< j) = true  i<j |
| THM | lt_int_eq_false_elim |
i,j: . (i< j) = false  i<j |
| THM | eq_atom_eq_true_elim |
x,y:Atom. x= y Atom = true  x = y |
| THM | eq_atom_eq_false_elim |
x,y:Atom. x= y Atom = false  x = y |
| THM | eq_int_eq_true_elim_sqequal |
i,j: . ((i= j) ~ true )  i = j |
| THM | eq_int_eq_false_elim_sqequal |
i,j: . ((i= j) ~ false )  i j |
| THM | lt_int_eq_true_elim_sqequal |
i,j: . ((i< j) ~ true )  i<j |
| THM | lt_int_eq_false_elim_sqequal |
i,j: . ((i< j) ~ false )  i<j |
| THM | eq_atom_eq_true_elim_sqequal |
x,y:Atom. (x= y Atom ~ true )  x = y |
| THM | eq_atom_eq_false_elim_sqequal |
x,y:Atom. (x= y Atom ~ false )  x = y |
| THM | bool_cases_sqequal |
b: . (b ~ true ) (b ~ false ) |