Introduction | Introductory Remarks | |
def | wellfounded |
== P:(AProp). (j:A. (k:A. R(k;j) P(k)) P(j)) {n:A. P(n)} |
COM | INV_IMAGE_com | Inverse Image (Rank) Induction lemmas and tactics ... |
THM | inv_image_ind_a |
WellFnd{i}(T;x,y.r(x,y)) WellFnd{i}(S;x,y.r(f(x),f(y))) |
THM | inv_image_ind_tp |
WellFnd{i}(T;x,y.r(x,y)) WellFnd{i}(S;x,y.r(f(x),f(y))) |
THM | inv_image_ind |
WellFnd{i}(A;x,y.r(x,y)) WellFnd{i}(B;x,y.r(f(x),f(y))) |
COM | WFND_FUNCTIONALITY_tcom | Functionality lemmas for wellfounded predicate. ... |
THM | wellfounded_functionality_wrt_implies |
T1 = T2 (x,y:T1. r1(x,y) r2(x,y)) WellFnd{i}(T1;x,y.r1(x,y)) WellFnd{i}(T2;x,y.r2(x,y)) |
THM | wellfounded_functionality_wrt_iff |
T1 = T2 (x,y:T1. r1(x,y) r2(x,y)) (WellFnd{i}(T1;x,y.r1(x,y)) WellFnd{i}(T2;x,y.r2(x,y))) |