Origin Definitions Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
well_fnd
Nuprl Section: well_fnd

Selected Objects
IntroductionIntroductory Remarks
defwellfounded WellFnd{i}(A;x,y.R(x;y))
== P:(AProp). (j:A. (k:AR(k;j P(k))  P(j))  {n:AP(n)}
COMINV_IMAGE_com Inverse Image (Rank) Induction lemmas and tactics ...
THMinv_image_ind_a r:(TTProp), S:Type, f:(ST).
WellFnd{i}(T;x,y.r(x,y))  WellFnd{i}(S;x,y.r(f(x),f(y)))
THMinv_image_ind_tp r:(TTProp), S:Type, f:(ST).
WellFnd{i}(T;x,y.r(x,y))  WellFnd{i}(S;x,y.r(f(x),f(y)))
THMinv_image_ind r:(AAProp), B:Type, f:(BA).
WellFnd{i}(A;x,y.r(x,y))  WellFnd{i}(B;x,y.r(f(x),f(y)))
COMWFND_FUNCTIONALITY_tcom Functionality lemmas for wellfounded predicate. ...
THMwellfounded_functionality_wrt_implies r1:(T1T1Prop), r2:(T2T2Prop).
T1 = T2

(x,y:T1r1(x,y r2(x,y))

WellFnd{i}(T1;x,y.r1(x,y))  WellFnd{i}(T2;x,y.r2(x,y))
THMwellfounded_functionality_wrt_iff r1:(T1T1Prop), r2:(T2T2Prop).
T1 = T2

(x,y:T1r1(x,y r2(x,y))

(WellFnd{i}(T1;x,y.r1(x,y))  WellFnd{i}(T2;x,y.r2(x,y)))
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Origin Definitions Sections StandardLIB Doc