Step
*
2
of Lemma
ocmon_trans
1. ∀[g:OCMon]. ∀[a,b,c:|g|]. ((↑(a ≤b b))
⇒ (↑(b ≤b c))
⇒ (↑(a ≤b c)))
⊢ ∀[g:OCMon]. ∀[a,b,c:|g|]. (↑(a ≤b c)) supposing ((↑(b ≤b c)) and (↑(a ≤b b)))
BY
{ (Auto THEN InstHyp [⌜g⌝;⌜a⌝;⌜b⌝;⌜c⌝] 1⋅ THEN Auto) }
Latex:
Latex:
1. \mforall{}[g:OCMon]. \mforall{}[a,b,c:|g|]. ((\muparrow{}(a \mleq{}\msubb{} b)) {}\mRightarrow{} (\muparrow{}(b \mleq{}\msubb{} c)) {}\mRightarrow{} (\muparrow{}(a \mleq{}\msubb{} c)))
\mvdash{} \mforall{}[g:OCMon]. \mforall{}[a,b,c:|g|]. (\muparrow{}(a \mleq{}\msubb{} c)) supposing ((\muparrow{}(b \mleq{}\msubb{} c)) and (\muparrow{}(a \mleq{}\msubb{} b)))
By
Latex:
(Auto THEN InstHyp [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}] 1\mcdot{} THEN Auto)
Home
Index