Nuprl Lemma : int-to-ring-zero

[r:Top]. (int-to-ring(r;0) 0)


Proof




Definitions occuring in Statement :  int-to-ring: int-to-ring(r;n) rng_zero: 0 uall: [x:A]. B[x] top: Top natural_number: $n sqequal: t
Definitions unfolded in proof :  int-to-ring: int-to-ring(r;n) lt_int: i <j ifthenelse: if then else fi  bfalse: ff rng_nat_op: n ⋅e mon_nat_op: n ⋅ e add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e nat_op: x(op;id) e itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y subtract: m uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom lemma_by_obid hypothesis

Latex:
\mforall{}[r:Top].  (int-to-ring(r;0)  \msim{}  0)



Date html generated: 2016_05_15-PM-00_27_05
Last ObjectModification: 2015_12_26-PM-11_59_09

Theory : rings_1


Home Index