Step
*
2
5
of Lemma
padic-ring_wf
1. p : {2...}
2. ℤ(p) ∈ RngSig
3. ∀[x,y,z:p-adics(p)].  (x + y + z = x + y + z ∈ p-adics(p))
4. ∀[x:p-adics(p)]. ((x + 0(p) = x ∈ p-adics(p)) ∧ (0(p) + x = x ∈ p-adics(p)))
5. ∀[x:p-adics(p)]. ((x + -(x) = 0(p) ∈ p-adics(p)) ∧ (-(x) + x = 0(p) ∈ p-adics(p)))
6. ∀[x,y,z:p-adics(p)].  (x * y * z = x * y * z ∈ p-adics(p))
7. ∀[x:p-adics(p)]. ((x * 1(p) = x ∈ p-adics(p)) ∧ (1(p) * x = x ∈ p-adics(p)))
8. ∀[a,x,y:p-adics(p)].  ((a * x + y = a * x + a * y ∈ p-adics(p)) ∧ (x + y * a = x * a + y * a ∈ p-adics(p)))
9. ∀[x,y:p-adics(p)].  (x * y = y * x ∈ p-adics(p))
10. ∀a,b:basic-padic(p).  bpa-equiv(p;bpa-mul(p;a;b);pa-mul(p;a;b))
11. ∀a,b:basic-padic(p).  bpa-equiv(p;bpa-add(p;a;b);pa-add(p;a;b))
12. IsMonoid(padic(p);λu,v. pa-mul(p;u;v);1(p))
13. a : padic(p)
14. x : padic(p)
15. y : padic(p)
⊢ pa-mul(p;a;pa-add(p;x;y)) = pa-add(p;pa-mul(p;a;x);pa-mul(p;a;y)) ∈ padic(p)
BY
{ ((Assert ⌜pa-mul(p;a;bpa-add(p;x;y)) = pa-add(p;bpa-mul(p;a;x);bpa-mul(p;a;y)) ∈ padic(p)⌝⋅
   THENM (NthHypEq (-1)
          THEN EqCDA
          THEN (BLemma `pa-mul_functionality` ORELSE BLemma `pa-add_functionality`)
          THEN Auto
          THEN Try ((RelRST THEN Auto))
          THEN Symmetry
          THEN Auto)
   )
   THEN Unfolds ``pa-mul pa-add`` 0
   THEN (RWO "bpa-equiv-iff-norm2" 0 THENA Auto)) }
1
1. p : {2...}
2. ℤ(p) ∈ RngSig
3. ∀[x,y,z:p-adics(p)].  (x + y + z = x + y + z ∈ p-adics(p))
4. ∀[x:p-adics(p)]. ((x + 0(p) = x ∈ p-adics(p)) ∧ (0(p) + x = x ∈ p-adics(p)))
5. ∀[x:p-adics(p)]. ((x + -(x) = 0(p) ∈ p-adics(p)) ∧ (-(x) + x = 0(p) ∈ p-adics(p)))
6. ∀[x,y,z:p-adics(p)].  (x * y * z = x * y * z ∈ p-adics(p))
7. ∀[x:p-adics(p)]. ((x * 1(p) = x ∈ p-adics(p)) ∧ (1(p) * x = x ∈ p-adics(p)))
8. ∀[a,x,y:p-adics(p)].  ((a * x + y = a * x + a * y ∈ p-adics(p)) ∧ (x + y * a = x * a + y * a ∈ p-adics(p)))
9. ∀[x,y:p-adics(p)].  (x * y = y * x ∈ p-adics(p))
10. ∀a,b:basic-padic(p).  bpa-equiv(p;bpa-mul(p;a;b);pa-mul(p;a;b))
11. ∀a,b:basic-padic(p).  bpa-equiv(p;bpa-add(p;a;b);pa-add(p;a;b))
12. IsMonoid(padic(p);λu,v. pa-mul(p;u;v);1(p))
13. a : padic(p)
14. x : padic(p)
15. y : padic(p)
⊢ bpa-equiv(p;bpa-mul(p;a;bpa-add(p;x;y));bpa-add(p;bpa-mul(p;a;x);bpa-mul(p;a;y)))
Latex:
Latex:
1.  p  :  \{2...\}
2.  \mBbbZ{}(p)  \mmember{}  RngSig
3.  \mforall{}[x,y,z:p-adics(p)].    (x  +  y  +  z  =  x  +  y  +  z)
4.  \mforall{}[x:p-adics(p)].  ((x  +  0(p)  =  x)  \mwedge{}  (0(p)  +  x  =  x))
5.  \mforall{}[x:p-adics(p)].  ((x  +  -(x)  =  0(p))  \mwedge{}  (-(x)  +  x  =  0(p)))
6.  \mforall{}[x,y,z:p-adics(p)].    (x  *  y  *  z  =  x  *  y  *  z)
7.  \mforall{}[x:p-adics(p)].  ((x  *  1(p)  =  x)  \mwedge{}  (1(p)  *  x  =  x))
8.  \mforall{}[a,x,y:p-adics(p)].    ((a  *  x  +  y  =  a  *  x  +  a  *  y)  \mwedge{}  (x  +  y  *  a  =  x  *  a  +  y  *  a))
9.  \mforall{}[x,y:p-adics(p)].    (x  *  y  =  y  *  x)
10.  \mforall{}a,b:basic-padic(p).    bpa-equiv(p;bpa-mul(p;a;b);pa-mul(p;a;b))
11.  \mforall{}a,b:basic-padic(p).    bpa-equiv(p;bpa-add(p;a;b);pa-add(p;a;b))
12.  IsMonoid(padic(p);\mlambda{}u,v.  pa-mul(p;u;v);1(p))
13.  a  :  padic(p)
14.  x  :  padic(p)
15.  y  :  padic(p)
\mvdash{}  pa-mul(p;a;pa-add(p;x;y))  =  pa-add(p;pa-mul(p;a;x);pa-mul(p;a;y))
By
Latex:
((Assert  \mkleeneopen{}pa-mul(p;a;bpa-add(p;x;y))  =  pa-add(p;bpa-mul(p;a;x);bpa-mul(p;a;y))\mkleeneclose{}\mcdot{}
  THENM  (NthHypEq  (-1)
                THEN  EqCDA
                THEN  (BLemma  `pa-mul\_functionality`  ORELSE  BLemma  `pa-add\_functionality`)
                THEN  Auto
                THEN  Try  ((RelRST  THEN  Auto))
                THEN  Symmetry
                THEN  Auto)
  )
  THEN  Unfolds  ``pa-mul  pa-add``  0
  THEN  (RWO  "bpa-equiv-iff-norm2"  0  THENA  Auto))
Home
Index