Step
*
of Lemma
rng_sum_is_0
∀[r:Rng]. ∀[a,b:ℤ]. ∀[F:{a..b-} ⟶ |r|].
(Σ(r) a ≤ j < b. F[j]) = 0 ∈ |r| supposing (a ≤ b) ∧ (∀j:{a..b-}. (F[j] = 0 ∈ |r|))
BY
{ ((InstLemma `rng_sum_0` [] THEN RepeatFor 3 (ParallelLast'))
THEN Auto
THEN NthHypEq (-1)
THEN RepeatFor 2 (EqCDA)
THEN Auto) }
Latex:
Latex:
\mforall{}[r:Rng]. \mforall{}[a,b:\mBbbZ{}]. \mforall{}[F:\{a..b\msupminus{}\} {}\mrightarrow{} |r|].
(\mSigma{}(r) a \mleq{} j < b. F[j]) = 0 supposing (a \mleq{} b) \mwedge{} (\mforall{}j:\{a..b\msupminus{}\}. (F[j] = 0))
By
Latex:
((InstLemma `rng\_sum\_0` [] THEN RepeatFor 3 (ParallelLast'))
THEN Auto
THEN NthHypEq (-1)
THEN RepeatFor 2 (EqCDA)
THEN Auto)
Home
Index