Nuprl Definition : algebra

algebra{i:l}(A) ==
  {m:A-Module| 
   IsMonoid(m.car;m.times;m.one) ∧ BiLinear(m.car;m.plus;m.times) ∧ (∀a:|A|. Dist1op2opLR(m.car;m.act a;m.times))} 



Definitions occuring in Statement :  module: A-Module alg_act: a.act alg_one: a.one alg_times: a.times alg_plus: a.plus alg_car: a.car all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a rng_car: |r| monoid_p: IsMonoid(T;op;id) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) bilinear: BiLinear(T;pl;tm)
Definitions occuring in definition :  set: {x:A| B[x]}  module: A-Module monoid_p: IsMonoid(T;op;id) alg_one: a.one and: P ∧ Q bilinear: BiLinear(T;pl;tm) alg_plus: a.plus all: x:A. B[x] rng_car: |r| dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) alg_car: a.car apply: a alg_act: a.act alg_times: a.times

Latex:
algebra\{i:l\}(A)  ==
    \{m:A-Module| 
      IsMonoid(m.car;m.times;m.one)
      \mwedge{}  BiLinear(m.car;m.plus;m.times)
      \mwedge{}  (\mforall{}a:|A|.  Dist1op2opLR(m.car;m.act  a;m.times))\} 



Date html generated: 2016_05_16-AM-07_27_20
Last ObjectModification: 2015_09_23-AM-09_51_02

Theory : algebras_1


Home Index