Nuprl Definition : module

A-Module ==
  {m:algebra_sig{i:l}(|A|)| 
   IsGroup(m.car;m.plus;m.zero;m.minus)
   ∧ Comm(m.car;m.plus)
   ∧ IsAction(|A|;*;1;m.car;m.act)
   ∧ IsBilinear(|A|;m.car;m.car;+A;m.plus;m.plus;m.act)} 



Definitions occuring in Statement :  alg_act: a.act alg_minus: a.minus alg_zero: a.zero alg_plus: a.plus alg_car: a.car algebra_sig: algebra_sig{i:l}(A) comm: Comm(T;op) and: P ∧ Q set: {x:A| B[x]}  rng_one: 1 rng_times: * rng_plus: +r rng_car: |r| group_p: IsGroup(T;op;id;inv) action_p: IsAction(A;x;e;S;f) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
Definitions occuring in definition :  set: {x:A| B[x]}  algebra_sig: algebra_sig{i:l}(A) group_p: IsGroup(T;op;id;inv) alg_zero: a.zero alg_minus: a.minus comm: Comm(T;op) and: P ∧ Q action_p: IsAction(A;x;e;S;f) rng_times: * rng_one: 1 bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) rng_car: |r| alg_car: a.car rng_plus: +r alg_plus: a.plus alg_act: a.act
FDL editor aliases :  module

Latex:
A-Module  ==
    \{m:algebra\_sig\{i:l\}(|A|)| 
      IsGroup(m.car;m.plus;m.zero;m.minus)
      \mwedge{}  Comm(m.car;m.plus)
      \mwedge{}  IsAction(|A|;*;1;m.car;m.act)
      \mwedge{}  IsBilinear(|A|;m.car;m.car;+A;m.plus;m.plus;m.act)\} 



Date html generated: 2016_05_16-AM-07_26_23
Last ObjectModification: 2015_09_23-AM-09_51_00

Theory : algebras_1


Home Index