Nuprl Definition : module_hom_p

(compound):: 
module_hom_p(a; m; n; f) ==
  FunThru2op(m.car;n.car;m.plus;n.plus;f) ∧ (∀u:|a|. fun_thru_1op(m.car;n.car;m.act u;n.act u;f))



Definitions occuring in Statement :  alg_act: a.act alg_plus: a.plus alg_car: a.car all: x:A. B[x] and: P ∧ Q apply: a rng_car: |r| fun_thru_2op: FunThru2op(A;B;opa;opb;f) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
Definitions occuring in definition :  and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) alg_plus: a.plus all: x:A. B[x] rng_car: |r| fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) alg_car: a.car apply: a alg_act: a.act

Latex:
(compound):: 
module\_hom\_p(a;  m;  n;  f)  ==
    FunThru2op(m.car;n.car;m.plus;n.plus;f)  \mwedge{}  (\mforall{}u:|a|.  fun\_thru\_1op(m.car;n.car;m.act  u;n.act  u;f))



Date html generated: 2016_05_16-AM-07_27_03
Last ObjectModification: 2015_09_23-AM-09_51_01

Theory : algebras_1


Home Index