Nuprl Definition : module_hom_p
(compound):: 
module_hom_p(a; m; n; f) ==
  FunThru2op(m.car;n.car;m.plus;n.plus;f) ∧ (∀u:|a|. fun_thru_1op(m.car;n.car;m.act u;n.act u;f))
Definitions occuring in Statement : 
alg_act: a.act
, 
alg_plus: a.plus
, 
alg_car: a.car
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
rng_car: |r|
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
Definitions occuring in definition : 
and: P ∧ Q
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
alg_plus: a.plus
, 
all: ∀x:A. B[x]
, 
rng_car: |r|
, 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
, 
alg_car: a.car
, 
apply: f a
, 
alg_act: a.act
Latex:
(compound):: 
module\_hom\_p(a;  m;  n;  f)  ==
    FunThru2op(m.car;n.car;m.plus;n.plus;f)  \mwedge{}  (\mforall{}u:|a|.  fun\_thru\_1op(m.car;n.car;m.act  u;n.act  u;f))
Date html generated:
2016_05_16-AM-07_27_03
Last ObjectModification:
2015_09_23-AM-09_51_01
Theory : algebras_1
Home
Index