Nuprl Definition : rng_abmon

rng_abmon{i}() ==  {r:RngSig| IsMonoid(|r|;+r;0) ∧ Comm(|r|;+r) ∧ IsEqFun(|r|;=b)} 



Definitions occuring in Statement :  eqfun_p: IsEqFun(T;eq) comm: Comm(T;op) and: P ∧ Q set: {x:A| B[x]}  rng_zero: 0 rng_plus: +r rng_eq: =b rng_car: |r| rng_sig: RngSig monoid_p: IsMonoid(T;op;id)
Definitions occuring in definition :  set: {x:A| B[x]}  rng_sig: RngSig monoid_p: IsMonoid(T;op;id) rng_zero: 0 and: P ∧ Q comm: Comm(T;op) rng_plus: +r eqfun_p: IsEqFun(T;eq) rng_car: |r| rng_eq: =b

Latex:
rng\_abmon\{i\}()  ==    \{r:RngSig|  IsMonoid(|r|;+r;0)  \mwedge{}  Comm(|r|;+r)  \mwedge{}  IsEqFun(|r|;=\msubb{})\} 



Date html generated: 2016_05_16-AM-08_11_37
Last ObjectModification: 2015_09_23-AM-09_52_23

Theory : list_3


Home Index