Definition: rng_abmon
rng_abmon{i}() == {r:RngSig| IsMonoid(|r|;+r;0) ∧ Comm(|r|;+r) ∧ IsEqFun(|r|;=b)}
Lemma: rng_abmon_wf
rng_abmon{i}() ∈ 𝕌'
Definition: rng_mssum
Σx ∈ a. f[x] == msFor{r↓+gp} x ∈ a. f[x]
Lemma: rng_mssum_wf
∀s:DSet. ∀r:Rng. ∀f:|s| ⟶ |r|. ∀a:MSet{s}. (Σx ∈ a. f[x] ∈ |r|)
Lemma: rng_mssum_functionality_wrt_equal
∀s:DSet. ∀r:Rng. ∀f,f':|s| ⟶ |r|. ∀a,a':MSet{s}.
((a = a' ∈ MSet{s})
⇒ (∀x:|s|. ((↑(x ∈b a))
⇒ (f[x] = f'[x] ∈ |r|)))
⇒ ((Σx ∈ a. f[x]) = (Σx ∈ a'. f'[x]) ∈ |r|))
Lemma: comb_for_rng_mssum_wf
λs,r,f,a,z. Σx ∈ a. f[x] ∈ s:DSet ⟶ r:Rng ⟶ f:(|s| ⟶ |r|) ⟶ a:MSet{s} ⟶ (↓True) ⟶ |r|
Lemma: rng_mssum_functionality_wrt_bsubmset
∀s:DSet. ∀r:Rng. ∀f,f':|s| ⟶ |r|. ∀p,q:MSet{s}.
((∀x:|s|. ((↑(x ∈b q - p))
⇒ (f'[x] = 0 ∈ |r|)))
⇒ (↑(p ⊆b q))
⇒ (∀x:|s|. ((↑(x ∈b p))
⇒ (f[x] = f'[x] ∈ |r|)))
⇒ ((Σx ∈ p. f[x]) = (Σx ∈ q. f'[x]) ∈ |r|))
Lemma: rng_mssum_elim_lemma
∀[s,r,as,f:Top]. (Σx ∈ mk_mset(as). f[x] ~ Σ{r} x ∈ as. f[x])
Lemma: rng_times_mssum_l
∀s:DSet. ∀r:Rng. ∀f:|s| ⟶ |r|. ∀u:|r|. ∀a:MSet{s}. ((u * (Σx ∈ a. f[x])) = (Σx ∈ a. (u * f[x])) ∈ |r|)
Lemma: rng_times_mssum_r
∀s:DSet. ∀r:Rng. ∀f:|s| ⟶ |r|. ∀u:|r|. ∀a:MSet{s}. (((Σx ∈ a. f[x]) * u) = (Σx ∈ a. (f[x] * u)) ∈ |r|)
Lemma: rng_mssum_when_swap
∀s:DSet. ∀r:Rng. ∀f:|s| ⟶ |r|. ∀b:𝔹. ∀a:MSet{s}. ((Σx ∈ a. (when b. f[x])) = (when b. (Σx ∈ a. f[x])) ∈ |r|)
Lemma: rng_mssum_swap
∀r:Rng. ∀s,s':DSet. ∀f:|s| ⟶ |s'| ⟶ |r|. ∀a:MSet{s}. ∀b:MSet{s'}.
((Σx ∈ a. Σy ∈ b. f[x;y]) = (Σy ∈ b. Σx ∈ a. f[x;y]) ∈ |r|)
Lemma: rng_mssum_of_plus
∀r:Rng. ∀s:DSet. ∀e,f:|s| ⟶ |r|. ∀a:MSet{s}. ((Σx ∈ a. (e[x] +r f[x])) = ((Σx ∈ a. e[x]) +r (Σx ∈ a. f[x])) ∈ |r|)
Lemma: rng_mssum_dom_shift
∀s:DSet. ∀r:Rng. ∀f:|s| ⟶ |r|. ∀p,q:MSet{s}.
((↑(p ⊆b q))
⇒ (∀x:|s|. ((↑(x ∈b q - p))
⇒ (f[x] = 0 ∈ |r|)))
⇒ ((Σx ∈ p. f[x]) = (Σx ∈ q. f[x]) ∈ |r|))
Definition: mod_mssum
Σm x ∈ a. f[x] == msFor{m↓grp} x ∈ a. f[x]
Lemma: mod_mssum_wf
∀s:DSet. ∀r:Rng. ∀m:r-Module. ∀f:|s| ⟶ m.car. ∀a:MSet{s}. (Σm x ∈ a. f[x] ∈ m.car)
Lemma: comb_for_mod_mssum_wf
λs,r,m,f,a,z. Σm x ∈ a. f[x] ∈ s:DSet ⟶ r:Rng ⟶ m:r-Module ⟶ f:(|s| ⟶ m.car) ⟶ a:MSet{s} ⟶ (↓True) ⟶ m.car
Lemma: mod_mssum_functionality
∀s:DSet. ∀r:Rng. ∀m:r-Module. ∀f,f':|s| ⟶ m.car. ∀a,a':MSet{s}.
((a = a' ∈ MSet{s})
⇒ (∀x:|s|. ((↑(x ∈b a))
⇒ (f[x] = f'[x] ∈ m.car)))
⇒ ((Σm x ∈ a. f[x]) = (Σm x ∈ a'. f'[x]) ∈ m.car))
Lemma: rng_fset_for_when_eq
∀s:DSet. ∀r:Rng. ∀f:|s| ⟶ |r|. ∀e:|s|. ∀as:FiniteSet{s}.
((↑(e ∈b as))
⇒ ((Σx ∈ as. (when x (=b) e. f[x])) = f[e] ∈ |r|))
Lemma: mod_times_mssum_l
∀s:DSet. ∀r:Rng. ∀m:algebra{i:l}(r). ∀f:|s| ⟶ m.car. ∀u:m.car. ∀a:MSet{s}.
((u m.times (Σm x ∈ a. f[x])) = (Σm x ∈ a. (u m.times f[x])) ∈ m.car)
Lemma: mod_times_mssum_r
∀s:DSet. ∀r:Rng. ∀m:algebra{i:l}(r). ∀f:|s| ⟶ m.car. ∀u:m.car. ∀a:MSet{s}.
(((Σm x ∈ a. f[x]) m.times u) = (Σm x ∈ a. (f[x] m.times u)) ∈ m.car)
Lemma: mod_action_mssum_l
∀s:DSet. ∀r:Rng. ∀m:r-Module. ∀f:|s| ⟶ m.car. ∀u:|r|. ∀a:MSet{s}.
((u m.act (Σm x ∈ a. f[x])) = (Σm x ∈ a. (u m.act f[x])) ∈ m.car)
Lemma: mod_action_mssum_r
∀s:DSet. ∀r:Rng. ∀m:r-Module. ∀f:|s| ⟶ |r|. ∀u:m.car. ∀a:MSet{s}.
(((Σx ∈ a. f[x]) m.act u) = (Σm x ∈ a. (f[x] m.act u)) ∈ m.car)
Lemma: mod_action_when_l
∀r:Rng. ∀m:r-Module. ∀u:|r|. ∀x:m.car. ∀b:𝔹. ((u m.act (when b. x)) = (when b. (u m.act x)) ∈ m.car)
Lemma: mod_action_when_r
∀r:Rng. ∀m:r-Module. ∀u:|r|. ∀x:m.car. ∀b:𝔹. (((when b. u) m.act x) = (when b. (u m.act x)) ∈ m.car)
Lemma: mod_mssum_swap
∀r:Rng. ∀m:r-Module. ∀s,s':DSet. ∀f:|s| ⟶ |s'| ⟶ m.car. ∀a:MSet{s}. ∀b:MSet{s'}.
((Σm x ∈ a. Σm y ∈ b. f[x;y]) = (Σm y ∈ b. Σm x ∈ a. f[x;y]) ∈ m.car)
Home
Index