Nuprl Lemma : rng_mssum_of_plus

r:Rng. ∀s:DSet. ∀e,f:|s| ⟶ |r|. ∀a:MSet{s}.  ((Σx ∈ a. (e[x] +r f[x])) ((Σx ∈ a. e[x]) +r x ∈ a. f[x])) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_mssum: rng_mssum mset: MSet{s} infix_ap: y so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T rng: Rng rng_plus: +r rng_car: |r| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} mon: Mon iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a implies:  Q rng_mssum: rng_mssum add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t)
Lemmas referenced :  mset_for_of_op add_grp_of_rng_wf_b subtype_rel_sets grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis applyEquality sqequalRule instantiate setEquality cumulativity setElimination rename lambdaEquality independent_isectElimination

Latex:
\mforall{}r:Rng.  \mforall{}s:DSet.  \mforall{}e,f:|s|  {}\mrightarrow{}  |r|.  \mforall{}a:MSet\{s\}.
    ((\mSigma{}x  \mmember{}  a.  (e[x]  +r  f[x]))  =  ((\mSigma{}x  \mmember{}  a.  e[x])  +r  (\mSigma{}x  \mmember{}  a.  f[x])))



Date html generated: 2016_05_16-AM-08_12_01
Last ObjectModification: 2015_12_28-PM-06_06_26

Theory : list_3


Home Index