Nuprl Lemma : rng_mssum_of_plus
∀r:Rng. ∀s:DSet. ∀e,f:|s| ⟶ |r|. ∀a:MSet{s}. ((Σx ∈ a. (e[x] +r f[x])) = ((Σx ∈ a. e[x]) +r (Σx ∈ a. f[x])) ∈ |r|)
Proof
Definitions occuring in Statement :
rng_mssum: rng_mssum,
mset: MSet{s}
,
infix_ap: x f y
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
,
rng: Rng
,
rng_plus: +r
,
rng_car: |r|
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
abgrp: AbGrp
,
grp: Group{i}
,
mon: Mon
,
iabmonoid: IAbMonoid
,
imon: IMonoid
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
rng_mssum: rng_mssum,
add_grp_of_rng: r↓+gp
,
grp_car: |g|
,
pi1: fst(t)
,
grp_op: *
,
pi2: snd(t)
Lemmas referenced :
mset_for_of_op,
add_grp_of_rng_wf_b,
subtype_rel_sets,
grp_sig_wf,
monoid_p_wf,
grp_car_wf,
grp_op_wf,
grp_id_wf,
inverse_wf,
grp_inv_wf,
comm_wf,
set_wf,
rng_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isectElimination,
hypothesisEquality,
hypothesis,
applyEquality,
sqequalRule,
instantiate,
setEquality,
cumulativity,
setElimination,
rename,
lambdaEquality,
independent_isectElimination
Latex:
\mforall{}r:Rng. \mforall{}s:DSet. \mforall{}e,f:|s| {}\mrightarrow{} |r|. \mforall{}a:MSet\{s\}.
((\mSigma{}x \mmember{} a. (e[x] +r f[x])) = ((\mSigma{}x \mmember{} a. e[x]) +r (\mSigma{}x \mmember{} a. f[x])))
Date html generated:
2016_05_16-AM-08_12_01
Last ObjectModification:
2015_12_28-PM-06_06_26
Theory : list_3
Home
Index