Nuprl Lemma : mset_for_of_op
∀g:IAbMonoid. ∀s:DSet. ∀e,f:|s| ⟶ |g|. ∀a:MSet{s}.
  ((msFor{g} x ∈ a. (e[x] * f[x])) = ((msFor{g} x ∈ a. e[x]) * (msFor{g} x ∈ a. f[x])) ∈ |g|)
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset: MSet{s}
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
dset: DSet
, 
implies: P 
⇒ Q
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
mset_for_elim_lemma, 
all_mset_elim, 
equal_wf, 
grp_car_wf, 
mset_for_wf, 
infix_ap_wf, 
grp_op_wf, 
set_car_wf, 
mset_wf, 
sq_stable__equal, 
all_wf, 
list_wf, 
mon_for_wf, 
dset_wf, 
iabmonoid_wf, 
mon_for_of_op
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
addLevel, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
independent_functionElimination, 
productElimination, 
levelHypothesis, 
functionEquality
Latex:
\mforall{}g:IAbMonoid.  \mforall{}s:DSet.  \mforall{}e,f:|s|  {}\mrightarrow{}  |g|.  \mforall{}a:MSet\{s\}.
    ((msFor\{g\}  x  \mmember{}  a.  (e[x]  *  f[x]))  =  ((msFor\{g\}  x  \mmember{}  a.  e[x])  *  (msFor\{g\}  x  \mmember{}  a.  f[x])))
Date html generated:
2016_05_16-AM-07_47_52
Last ObjectModification:
2015_12_28-PM-06_03_10
Theory : mset
Home
Index