Nuprl Lemma : mset_for_of_op

g:IAbMonoid. ∀s:DSet. ∀e,f:|s| ⟶ |g|. ∀a:MSet{s}.
  ((msFor{g} x ∈ a. (e[x] f[x])) ((msFor{g} x ∈ a. e[x]) (msFor{g} x ∈ a. f[x])) ∈ |g|)


Proof




Definitions occuring in Statement :  mset_for: mset_for mset: MSet{s} infix_ap: y so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T iabmonoid: IAbMonoid grp_op: * grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s] uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid dset: DSet implies:  Q infix_ap: y iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  mset_for_elim_lemma all_mset_elim equal_wf grp_car_wf mset_for_wf infix_ap_wf grp_op_wf set_car_wf mset_wf sq_stable__equal all_wf list_wf mon_for_wf dset_wf iabmonoid_wf mon_for_of_op
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut addLevel sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality lambdaEquality isectElimination setElimination rename because_Cache applyEquality independent_functionElimination productElimination levelHypothesis functionEquality

Latex:
\mforall{}g:IAbMonoid.  \mforall{}s:DSet.  \mforall{}e,f:|s|  {}\mrightarrow{}  |g|.  \mforall{}a:MSet\{s\}.
    ((msFor\{g\}  x  \mmember{}  a.  (e[x]  *  f[x]))  =  ((msFor\{g\}  x  \mmember{}  a.  e[x])  *  (msFor\{g\}  x  \mmember{}  a.  f[x])))



Date html generated: 2016_05_16-AM-07_47_52
Last ObjectModification: 2015_12_28-PM-06_03_10

Theory : mset


Home Index