Nuprl Lemma : infix_ap_wf
∀[A,B,C:Type]. ∀[f:A ⟶ B ⟶ C]. ∀[x:A]. ∀[y:B].  (x f y ∈ C)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
infix_ap: x f y
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[x:A].  \mforall{}[y:B].    (x  f  y  \mmember{}  C)
Date html generated:
2016_05_13-PM-03_06_50
Last ObjectModification:
2016_01_06-PM-05_29_01
Theory : core_2
Home
Index