Nuprl Lemma : infix_ap_wf

[A,B,C:Type]. ∀[f:A ⟶ B ⟶ C]. ∀[x:A]. ∀[y:B].  (x y ∈ C)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] infix_ap: y member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T infix_ap: y
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality hypothesisEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality isectElimination thin because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[x:A].  \mforall{}[y:B].    (x  f  y  \mmember{}  C)



Date html generated: 2016_05_13-PM-03_06_50
Last ObjectModification: 2016_01_06-PM-05_29_01

Theory : core_2


Home Index