Nuprl Lemma : equal_wf
∀[A:Type]. ∀[a,b:A].  (a = b ∈ A ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
Lemmas referenced : 
respects-equality-trivial, 
equal-wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
universeEquality, 
independent_functionElimination, 
extract_by_obid
Latex:
\mforall{}[A:Type].  \mforall{}[a,b:A].    (a  =  b  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_13_48
Last ObjectModification:
2018_11_21-PM-10_58_33
Theory : core_2
Home
Index