Nuprl Lemma : equal_wf

[A:Type]. ∀[a,b:A].  (a b ∈ A ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: member: t ∈ T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q
Lemmas referenced :  respects-equality-trivial equal-wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  hypothesisEquality Error :isect_memberEquality_alt,  isectElimination thin Error :isectIsTypeImplies,  Error :universeIsType,  universeEquality independent_functionElimination extract_by_obid

Latex:
\mforall{}[A:Type].  \mforall{}[a,b:A].    (a  =  b  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-AM-11_13_48
Last ObjectModification: 2018_11_21-PM-10_58_33

Theory : core_2


Home Index