Nuprl Lemma : grp_car_wf

[g:GrpSig]. (|g| ∈ Type)


Proof




Definitions occuring in Statement :  grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T grp_sig: GrpSig grp_car: |g| pi1: fst(t)
Lemmas referenced :  grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid

Latex:
\mforall{}[g:GrpSig].  (|g|  \mmember{}  Type)



Date html generated: 2016_05_15-PM-00_06_14
Last ObjectModification: 2015_12_26-PM-11_47_36

Theory : groups_1


Home Index