Nuprl Lemma : mset_wf

s:DSet. (MSet{s} ∈ Type)


Proof




Definitions occuring in Statement :  mset: MSet{s} all: x:A. B[x] member: t ∈ T universe: Type dset: DSet
Definitions unfolded in proof :  mset: MSet{s} all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf list_wf set_car_wf permr_wf permr_equiv_rel dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaEquality dependent_functionElimination because_Cache independent_isectElimination

Latex:
\mforall{}s:DSet.  (MSet\{s\}  \mmember{}  Type)



Date html generated: 2016_05_16-AM-07_46_13
Last ObjectModification: 2015_12_28-PM-06_04_00

Theory : mset


Home Index