Nuprl Lemma : quotient_wf

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  x,y:T//E[x;y] ∈ Type supposing EquivRel(T;x,y.E[x;y])


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] and: P ∧ Q subtype_rel: A ⊆B cand: c∧ B guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] implies:  Q quotient: x,y:A//B[x; y] sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  equiv_rel_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality lambdaEquality applyEquality isect_memberEquality because_Cache functionEquality cumulativity universeEquality productEquality productElimination independent_pairFormation dependent_functionElimination independent_functionElimination pertypeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    x,y:T//E[x;y]  \mmember{}  Type  supposing  EquivRel(T;x,y.E[x;y])



Date html generated: 2016_05_14-AM-06_07_42
Last ObjectModification: 2015_12_26-AM-11_48_38

Theory : quot_1


Home Index