Nuprl Lemma : permr_equiv_rel
∀T:Type. EquivRel(T List;as,bs.as ≡(T) bs)
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
and: P ∧ Q
Lemmas referenced : 
list_wf, 
permr_inversion, 
permr_wf, 
permr_transitivity, 
permr_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
inhabitedIsType, 
universeEquality, 
sqequalRule, 
lambdaFormation_alt, 
independent_pairFormation
Latex:
\mforall{}T:Type.  EquivRel(T  List;as,bs.as  \mequiv{}(T)  bs)
Date html generated:
2019_10_16-PM-01_00_30
Last ObjectModification:
2018_10_08-AM-11_54_22
Theory : perms_2
Home
Index