Nuprl Lemma : permr_equiv_rel

T:Type. EquivRel(T List;as,bs.as ≡(T) bs)


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs list: List equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] guard: {T} implies:  Q prop: equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) and: P ∧ Q
Lemmas referenced :  list_wf permr_inversion permr_wf permr_transitivity permr_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination because_Cache independent_functionElimination inhabitedIsType universeEquality sqequalRule lambdaFormation_alt independent_pairFormation

Latex:
\mforall{}T:Type.  EquivRel(T  List;as,bs.as  \mequiv{}(T)  bs)



Date html generated: 2019_10_16-PM-01_00_30
Last ObjectModification: 2018_10_08-AM-11_54_22

Theory : perms_2


Home Index