Nuprl Lemma : permr_inversion

T:Type. ∀as,bs:T List.  ((bs ≡(T) as)  (as ≡(T) bs))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs list: List all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q permr: as ≡(T) bs cand: c∧ B exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] sym_grp: Sym(n) subtype_rel: A ⊆B uimplies: supposing a squash: T true: True and: P ∧ Q perm: Perm(T) ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q false: False nat: less_than: a < b not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top inv_perm: inv_perm(p) mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) inv_funs: InvFuns(A;B;f;g) compose: g iff: ⇐⇒ Q tidentity: Id{T} identity: Id
Lemmas referenced :  permr_wf list_wf inv_perm_wf int_seg_wf length_wf subtype_rel-equal perm_wf squash_wf true_wf istype-int istype-universe select_wf perm_f_wf non_neg_length int_seg_properties decidable__le le_wf less_than_wf length_wf_nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma perm_properties perm_b_wf equal_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut productElimination thin promote_hyp equalitySymmetry hypothesis independent_pairFormation universeIsType introduction extract_by_obid dependent_functionElimination hypothesisEquality inhabitedIsType isectElimination universeEquality dependent_pairFormation_alt natural_numberEquality applyEquality independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity sqequalRule imageMemberEquality baseClosed dependent_set_memberEquality_alt productIsType equalityIsType1 applyLambdaEquality setElimination rename functionIsType because_Cache unionElimination approximateComputation independent_functionElimination int_eqEquality isect_memberEquality_alt voidElimination productEquality functionExtensionality instantiate

Latex:
\mforall{}T:Type.  \mforall{}as,bs:T  List.    ((bs  \mequiv{}(T)  as)  {}\mRightarrow{}  (as  \mequiv{}(T)  bs))



Date html generated: 2019_10_16-PM-01_00_26
Last ObjectModification: 2018_10_08-PM-05_32_59

Theory : perms_2


Home Index