Nuprl Lemma : int_seg_wf

[m,n:ℤ].  ({m..n-} ∈ Type)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q prop: subtype_rel: A ⊆B
Lemmas referenced :  not_wf less_than'_wf equal-wf-base int_subtype_base less_than_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut setEquality intEquality productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache axiomEquality Error :inhabitedIsType,  isect_memberEquality Error :universeIsType

Latex:
\mforall{}[m,n:\mBbbZ{}].    (\{m..n\msupminus{}\}  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_23_43
Last ObjectModification: 2018_09_26-AM-10_58_16

Theory : arithmetic


Home Index