Nuprl Lemma : int_seg_wf
∀[m,n:ℤ].  ({m..n-} ∈ Type)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
not_wf, 
less_than'_wf, 
equal-wf-base, 
int_subtype_base, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
setEquality, 
intEquality, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
axiomEquality, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType
Latex:
\mforall{}[m,n:\mBbbZ{}].    (\{m..n\msupminus{}\}  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_23_43
Last ObjectModification:
2018_09_26-AM-10_58_16
Theory : arithmetic
Home
Index