Nuprl Lemma : not_wf
∀[A:ℙ]. (¬A ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
hypothesisEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[A:\mBbbP{}].  (\mneg{}A  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_14_27
Last ObjectModification:
2018_09_26-AM-10_41_57
Theory : core_2
Home
Index