Nuprl Lemma : less_than_wf
∀[a,b:ℤ].  (a < b ∈ ℙ)
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
less_than: a < b
, 
prop: ℙ
Lemmas referenced : 
member_wf, 
less_than'_wf, 
and_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  <  b  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_17_52
Last ObjectModification:
2016_01_06-PM-05_20_13
Theory : core_2
Home
Index