Nuprl Lemma : list_wf

[T:Type]. (T List ∈ Type)


Proof




Definitions occuring in Statement :  list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list: List uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  colist_wf has-value_wf-partial nat_wf set-value-type le_wf int-value-type colength_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (T  List  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_25_32
Last ObjectModification: 2015_12_26-PM-00_42_27

Theory : list_0


Home Index