Nuprl Lemma : list_wf
∀[T:Type]. (T List ∈ Type)
Proof
Definitions occuring in Statement : 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
list: T List
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
colist_wf, 
has-value_wf-partial, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
colength_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (T  List  \mmember{}  Type)
Date html generated:
2016_05_14-AM-06_25_32
Last ObjectModification:
2015_12_26-PM-00_42_27
Theory : list_0
Home
Index