Nuprl Lemma : le_wf
∀[i,j:ℤ].  (i ≤ j ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
le: A ≤ B
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
le: A ≤ B
, 
prop: ℙ
Lemmas referenced : 
and_wf, 
not_wf, 
less_than'_wf, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  \mleq{}  j  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_29_34
Last ObjectModification:
2015_12_26-AM-09_47_37
Theory : arithmetic
Home
Index