Nuprl Lemma : set-value-type
∀[A:Type]. ∀[P:A ⟶ ℙ].  value-type({a:A| P[a]} ) supposing value-type(A)
Proof
Definitions occuring in Statement : 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
prop: ℙ
Lemmas referenced : 
subtype-value-type, 
equal-wf-base, 
base_wf, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
isect_memberEquality, 
axiomSqleEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    value-type(\{a:A|  P[a]\}  )  supposing  value-type(A)
Date html generated:
2016_05_13-PM-03_27_03
Last ObjectModification:
2015_12_26-AM-09_28_04
Theory : call!by!value_1
Home
Index