Nuprl Lemma : set-value-type

[A:Type]. ∀[P:A ⟶ ℙ].  value-type({a:A| P[a]} supposing value-type(A)


Proof




Definitions occuring in Statement :  value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B value-type: value-type(T) has-value: (a)↓ prop:
Lemmas referenced :  subtype-value-type equal-wf-base base_wf value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality applyEquality hypothesis because_Cache sqequalRule independent_isectElimination lambdaEquality setElimination rename isect_memberEquality axiomSqleEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    value-type(\{a:A|  P[a]\}  )  supposing  value-type(A)



Date html generated: 2016_05_13-PM-03_27_03
Last ObjectModification: 2015_12_26-AM-09_28_04

Theory : call!by!value_1


Home Index