Nuprl Lemma : value-type_wf

[T:Type]. (value-type(T) ∈ Type)


Proof




Definitions occuring in Statement :  value-type: value-type(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T value-type: value-type(T) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  base_wf isect_wf equal-wf-base has-value_wf_base uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality lemma_by_obid isectElimination thin hypothesisEquality because_Cache lambdaEquality

Latex:
\mforall{}[T:Type].  (value-type(T)  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_24_14
Last ObjectModification: 2015_12_26-AM-09_30_12

Theory : call!by!value_1


Home Index