Nuprl Lemma : uall_wf

[A:Type]. ∀[B:A ⟶ ℙ].  (∀[x:A]. B[x] ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut isectEquality cumulativity hypothesisEquality applyEquality sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry functionEquality universeEquality isect_memberEquality isectElimination thin

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}[x:A].  B[x]  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-AM-11_59_56
Last ObjectModification: 2018_02_02-AM-09_38_28

Theory : core_2


Home Index