Nuprl Lemma : permr_wf

T:Type. ∀as,bs:T List.  (as ≡(T) bs ∈ ℙ)


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs list: List prop: all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T permr: as ≡(T) bs prop: cand: c∧ B uall: [x:A]. B[x] sym_grp: Sym(n) so_lambda: λ2x.t[x] perm: Perm(T) subtype_rel: A ⊆B uimplies: supposing a ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q false: False nat: less_than: a < b squash: T not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s]
Lemmas referenced :  equal_wf length_wf exists_wf perm_wf int_seg_wf all_wf select_wf perm_f_wf non_neg_length int_seg_properties decidable__le le_wf less_than_wf length_wf_nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality hypothesis because_Cache dependent_functionElimination natural_numberEquality lambdaEquality_alt applyEquality setElimination rename independent_isectElimination equalityTransitivity equalitySymmetry productElimination dependent_set_memberEquality_alt independent_pairFormation productIsType universeIsType unionElimination applyLambdaEquality imageElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination inhabitedIsType universeEquality

Latex:
\mforall{}T:Type.  \mforall{}as,bs:T  List.    (as  \mequiv{}(T)  bs  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-01_00_17
Last ObjectModification: 2018_10_08-AM-10_29_26

Theory : perms_2


Home Index