Nuprl Lemma : exists_wf

[A:Type]. ∀[B:A ⟶ ℙ].  (∃a:A. B[a] ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] exists: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] prop: so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut productEquality hypothesisEquality applyEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality isectElimination thin because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].    (\mexists{}a:A.  B[a]  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_06_53
Last ObjectModification: 2016_01_06-PM-05_28_58

Theory : core_2


Home Index