Nuprl Lemma : perm_wf
∀T:Type. (Perm(T) ∈ Type)
Proof
Definitions occuring in Statement : 
perm: Perm(T)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
perm: Perm(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
perm_sig_wf, 
inv_funs_wf, 
perm_f_wf, 
perm_b_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
setEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
universeIsType, 
universeEquality
Latex:
\mforall{}T:Type.  (Perm(T)  \mmember{}  Type)
Date html generated:
2019_10_16-PM-00_58_36
Last ObjectModification:
2018_10_08-AM-09_49_02
Theory : perms_1
Home
Index