Nuprl Lemma : perm_wf

T:Type. (Perm(T) ∈ Type)


Proof




Definitions occuring in Statement :  perm: Perm(T) all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T perm: Perm(T) uall: [x:A]. B[x] prop:
Lemmas referenced :  perm_sig_wf inv_funs_wf perm_f_wf perm_b_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule setEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination universeIsType universeEquality

Latex:
\mforall{}T:Type.  (Perm(T)  \mmember{}  Type)



Date html generated: 2019_10_16-PM-00_58_36
Last ObjectModification: 2018_10_08-AM-09_49_02

Theory : perms_1


Home Index