Nuprl Lemma : perm_f_wf

T:Type. ∀p:perm_sig(T).  (p.f ∈ T ⟶ T)


Proof




Definitions occuring in Statement :  perm_f: p.f perm_sig: perm_sig(T) all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T perm_sig: perm_sig(T) perm_f: p.f pi1: fst(t)
Lemmas referenced :  perm_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}p:perm\_sig(T).    (p.f  \mmember{}  T  {}\mrightarrow{}  T)



Date html generated: 2016_05_16-AM-07_28_18
Last ObjectModification: 2015_12_28-PM-05_37_21

Theory : perms_1


Home Index