Nuprl Lemma : perm_f_wf
∀T:Type. ∀p:perm_sig(T).  (p.f ∈ T ⟶ T)
Proof
Definitions occuring in Statement : 
perm_f: p.f
, 
perm_sig: perm_sig(T)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
perm_sig: perm_sig(T)
, 
perm_f: p.f
, 
pi1: fst(t)
Lemmas referenced : 
perm_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}p:perm\_sig(T).    (p.f  \mmember{}  T  {}\mrightarrow{}  T)
Date html generated:
2016_05_16-AM-07_28_18
Last ObjectModification:
2015_12_28-PM-05_37_21
Theory : perms_1
Home
Index