Nuprl Lemma : inv_funs_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ A].  (InvFuns(A;B;f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  inv_funs: InvFuns(A;B;f;g) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T inv_funs: InvFuns(A;B;f;g) prop: and: P ∧ Q tidentity: Id{T}
Lemmas referenced :  equal_wf compose_wf tidentity_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  isect_memberEquality because_Cache Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  A].    (InvFuns(A;B;f;g)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_26_19
Last ObjectModification: 2018_09_26-AM-11_49_29

Theory : fun_1


Home Index